Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
1.
Dis Model Mech ; 17(3)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38469687

ABSTRACT

Protein homeostasis is perturbed in aging-related neurodegenerative diseases called tauopathies, which are pathologically characterized by aggregation of the microtubule-associated protein tau (encoded by the human MAPT gene). Transgenic Caenorhabditis elegans serve as a powerful model organism to study tauopathy disease mechanisms, but moderating transgenic expression level has proven problematic. To study neuronal tau proteostasis, we generated a suite of transgenic strains expressing low, medium or high levels of Dendra2::tau fusion proteins by comparing integrated multicopy transgene arrays with single-copy safe-harbor locus strains generated by recombinase-mediated cassette exchange. Multicopy Dendra2::tau strains exhibited expression level-dependent neuronal dysfunction that was modifiable by known genetic suppressors or an enhancer of tauopathy. Single-copy Dendra2::tau strains lacked distinguishable phenotypes on their own but enabled detection of enhancer-driven neuronal dysfunction. We used multicopy Dendra2::tau strains in optical pulse-chase experiments measuring tau turnover in vivo and found that Dendra2::tau turned over faster than the relatively stable Dendra2. Furthermore, Dendra2::tau turnover was dependent on the protein expression level and independent of co-expression with human TDP-43 (officially known as TARDBP), an aggregating protein interacting with pathological tau. We present Dendra2::tau transgenic C. elegans as a novel tool for investigating molecular mechanisms of tau proteostasis.


Subject(s)
Caenorhabditis elegans Proteins , Proteostasis , tau Proteins , Animals , Humans , Animals, Genetically Modified , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Disease Models, Animal , tau Proteins/genetics , tau Proteins/metabolism , Tauopathies/metabolism
2.
Neurobiol Dis ; 193: 106441, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38378122

ABSTRACT

Alzheimer's disease (AD), the most common aging-associated neurodegenerative dementia disorder, is defined by the presence of amyloid beta (Aß) and tau aggregates in the brain. However, more than half of patients also exhibit aggregates of the protein TDP-43 as a secondary pathology. The presence of TDP-43 pathology in AD is associated with increased tau neuropathology and worsened clinical outcomes in AD patients. Using C. elegans models of mixed pathology in AD, we have previously shown that TDP-43 specifically synergizes with tau but not Aß, resulting in enhanced neuronal dysfunction, selective neurodegeneration, and increased accumulation of pathological tau. However, cellular responses to co-morbid tau and TDP-43 preceding neurodegeneration have not been characterized. In this study, we evaluate transcriptomic changes at time-points preceding frank neuronal loss using a C. elegans model of tau and TDP-43 co-expression (tau-TDP-43 Tg). We find significant differential expression and exon usage in genes enriched in multiple pathways including lipid metabolism and lysosomal degradation. We note that early changes in tau-TDP-43 Tg resemble changes with tau alone, but a unique expression signature emerges during aging. We test loss-of-function mutations in a subset of tau and TDP-43 responsive genes, identifying new modifiers of neurotoxicity. Characterizing early cellular responses to tau and TDP-43 co-pathology is critical for understanding protective and pathogenic responses to mixed proteinopathies, and an important step in developing therapeutic strategies protecting against pathological tau and TDP-43 in AD.


Subject(s)
Alzheimer Disease , Tauopathies , Animals , Humans , tau Proteins/genetics , tau Proteins/metabolism , Amyloid beta-Peptides/genetics , Caenorhabditis elegans/genetics , Tauopathies/genetics , Alzheimer Disease/metabolism , DNA-Binding Proteins/metabolism , Gene Expression Profiling
3.
J Neurochem ; 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38317026

ABSTRACT

Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by clinical symptoms of memory and cognitive deficiencies. Postmortem evaluation of AD brain tissue shows proteinopathy that closely associate with the progression of this dementing disorder, including the accumulation of extracellular beta amyloid (Aß) and intracellular hyperphosphorylated tau (pTau) with neurofibrillary tangles (NFTs). Current therapies targeting Aß have limited clinical efficacy and life-threatening side effects and highlight the need for alternative treatments targeting pTau and other pathophysiologic mechanisms driving AD pathogenesis. The brain's extracellular matrices (ECM), particularly perineuronal nets (PNNs), play a crucial role in brain functioning and neurocircuit stability, and reorganization of these unique PNN matrices has been associated with the progression of AD and accumulation of pTau in humans. We hypothesize that AD-associated changes in PNNs may in part be driven by the accumulation of pTau within the brain. In this work, we investigated whether the presence of pTau influenced PNN structural integrity and PNN chondroitin sulfate-glycosaminoglycan (CS-GAG) compositional changes in two transgenic mouse models expressing tauopathy-related AD pathology, PS19 (P301S) and Tau4RTg2652 mice. We show that PS19 mice exhibit an age-dependent loss of hippocampal PNN CS-GAGs, but not the underlying aggrecan core protein structures, in association with pTau accumulation, gliosis, and neurodegeneration. The loss of PNN CS-GAGs were linked to shifts in CS-GAG sulfation patterns to favor the neuroregenerative isomer, 2S6S-CS. Conversely, Tau4RTg2652 mice exhibit stable PNN structures and normal CS-GAG isomer composition despite robust pTau accumulation, suggesting a critical interaction between neuronal PNN glycan integrity and neighboring glial cell activation. Overall, our findings provide insights into the complex relationship between PNN CS-GAGs, pTau pathology, gliosis, and neurodegeneration in mouse models of tauopathy, and offer new therapeutic insights and targets for AD treatment.

4.
MicroPubl Biol ; 20232023.
Article in English | MEDLINE | ID: mdl-37602280

ABSTRACT

Expression of human tau in C. elegans neurons causes progressive, age-associated loss of motor coordination, selective neurodegeneration, and shortened lifespan. Loss of function (LOF) mutations in the conserved gene sut-2 protects against progressive motor uncoordination and neurodegeneration in models of tauopathy. To determine whether sut-2 LOF also protects against shortened lifespan of tau transgenic C. elegans , we conducted lifespan assays comparing four different alleles of sut-2 . We found that sut-2 LOF robustly suppresses the shortened lifespan of tau transgenic animals. We also demonstrate that tau transgenic C. elegans exhibit hyperactive pharyngeal pumping, which is restored by sut-2 LOF.

5.
Brain ; 146(8): 3206-3220, 2023 08 01.
Article in English | MEDLINE | ID: mdl-36732296

ABSTRACT

Alzheimer's disease and related disorders feature neurofibrillary tangles and other neuropathological lesions composed of detergent-insoluble tau protein. In recent structural biology studies of tau proteinopathy, aggregated tau forms a distinct set of conformational variants specific to the different types of tauopathy disorders. However, the constituents driving the formation of distinct pathological tau conformations on pathway to tau-mediated neurodegeneration remain unknown. Previous work demonstrated RNA can serve as a driver of tau aggregation, and RNA associates with tau containing lesions, but tools for evaluating tau/RNA interactions remain limited. Here, we employed molecular interaction studies to measure the impact of tau/RNA binding on tau microtubule binding and aggregation. To investigate the importance of tau/RNA complexes (TRCs) in neurodegenerative disease, we raised a monoclonal antibody (TRC35) against aggregated tau/RNA complexes. We showed that native tau binds RNA with high affinity but low specificity, and tau binding to RNA competes with tau-mediated microtubule assembly functions. Tau/RNA interaction in vitro promotes the formation of higher molecular weight tau/RNA complexes, which represent an oligomeric tau species. Coexpression of tau and poly(A)45 RNA transgenes in Caenorhabditis elegans exacerbates tau-related phenotypes including neuronal dysfunction and pathological tau accumulation. TRC35 exhibits specificity for Alzheimer's disease-derived detergent-insoluble tau relative to soluble recombinant tau. Immunostaining with TRC35 labels a wide variety of pathological tau lesions in animal models of tauopathy, which are reduced in mice lacking the RNA binding protein MSUT2. TRC-positive lesions are evident in many human tauopathies including Alzheimer's disease, progressive supranuclear palsy, corticobasal degeneration and Pick's disease. We also identified ocular pharyngeal muscular dystrophy as a novel tauopathy disorder, where loss of function in the poly(A) RNA binding protein (PABPN1) causes accumulation of pathological tau in tissue from post-mortem human brain. Tau/RNA binding drives tau conformational change and aggregation inhibiting tau-mediated microtubule assembly. Our findings implicate cellular tau/RNA interactions as modulators of both normal tau function and pathological tau toxicity in tauopathy disorders and suggest feasibility for novel therapeutic approaches targeting TRCs.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Tauopathies , Humans , Mice , Animals , tau Proteins/metabolism , Alzheimer Disease/pathology , RNA/metabolism , Neurodegenerative Diseases/pathology , Detergents/metabolism , Polymerization , Tauopathies/pathology , Brain/pathology , RNA, Messenger/metabolism , Caenorhabditis elegans/metabolism , Microtubules/metabolism , Poly(A)-Binding Protein I/metabolism
6.
Proc Natl Acad Sci U S A ; 120(1): e2207250120, 2023 01 03.
Article in English | MEDLINE | ID: mdl-36574656

ABSTRACT

The pathological accumulation of the microtubule binding protein tau drives age-related neurodegeneration in a variety of disorders, collectively called tauopathies. In the most common tauopathy, Alzheimer's disease (AD), the accumulation of pathological tau strongly correlates with cognitive decline. The underlying molecular mechanisms that drive neurodegeneration in tauopathies remain incompletely understood and no effective disease modifying pharmacological interventions currently exist. Here, we show that tau toxicity depends on the highly conserved nuclear E3 ubiquitin ligase adaptor protein SPOP in a Caenorhabditis elegans model of tauopathy. Loss of function mutations in the C. elegans spop-1 gene significantly improves behavioral deficits in tau transgenic animals, while neuronal overexpression of SPOP-1 protein significantly worsens behavioral deficits. In addition, loss of spop-1 rescues a variety of tau-related phenotypes including the accumulation of total and phosphorylated tau protein, neurodegeneration, and shortened lifespan. Knockdown of SPOP-1's E3 ubiquitin ligase cul-3/Cullin3 does not improve tauopathy suggesting a non-degradative mechanism of action for SPOP-1. Suppression of disease-related phenotypes occurs independently of the nuclear speckle resident poly(A)-binding protein SUT-2/MSUT2. MSUT2 modifies tauopathy in mammalian neurons and in AD. Our work identifies SPOP as a novel modifier of tauopathy and a conceptual pathway for therapeutic intervention.


Subject(s)
Alzheimer Disease , Caenorhabditis elegans Proteins , Tauopathies , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Tauopathies/metabolism , tau Proteins/genetics , tau Proteins/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Animals, Genetically Modified , Alzheimer Disease/metabolism , Disease Models, Animal , Mammals/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Poly(A)-Binding Proteins/metabolism
7.
Front Neurosci ; 17: 1300705, 2023.
Article in English | MEDLINE | ID: mdl-38239833

ABSTRACT

The nematode Caenorhabditis elegans are a powerful model system to study human disease, with numerous experimental advantages including significant genetic and cellular homology to vertebrate animals, a short lifespan, and tractable behavioral, molecular biology and imaging assays. Beginning with the identification of SOD1 as a genetic cause of amyotrophic lateral sclerosis (ALS), C. elegans have contributed to a deeper understanding of the mechanistic underpinnings of this devastating neurodegenerative disease. More recently this work has expanded to encompass models of other types of ALS and the related disease frontotemporal lobar degeneration (FTLD-TDP), including those characterized by mutation or accumulation of the proteins TDP-43, C9orf72, FUS, HnRNPA2B1, ALS2, DCTN1, CHCHD10, ELP3, TUBA4A, CAV1, UBQLN2, ATXN3, TIA1, KIF5A, VAPB, GRN, and RAB38. In this review we summarize these models and the progress and insights from the last ten years of using C. elegans to study the neurodegenerative diseases ALS and FTLD-TDP.

8.
Dis Model Mech ; 15(4)2022 04 01.
Article in English | MEDLINE | ID: mdl-35178571

ABSTRACT

Although amyloid ß (Aß) and tau aggregates define the neuropathology of Alzheimer's disease (AD), TDP-43 has recently emerged as a co-morbid pathology in more than half of patients with AD. Individuals with concomitant Aß, tau and TDP-43 pathology experience accelerated cognitive decline and worsened brain atrophy, but the molecular mechanisms of TDP-43 neurotoxicity in AD are unknown. Synergistic interactions among Aß, tau and TDP-43 may be responsible for worsened disease outcomes. To study the biology underlying this process, we have developed new models of protein co-morbidity using the simple animal Caenorhabditis elegans. We demonstrate that TDP-43 specifically enhances tau but not Aß neurotoxicity, resulting in neuronal dysfunction, pathological tau accumulation and selective neurodegeneration. Furthermore, we find that synergism between tau and TDP-43 is rescued by loss-of-function of the robust tau modifier sut-2. Our results implicate enhanced tau neurotoxicity as the primary driver underlying worsened clinical and neuropathological phenotypes in AD with TDP-43 pathology, and identify cell-type specific sensitivities to co-morbid tau and TDP-43. Determining the relationship between co-morbid TDP-43 and tau is crucial to understand, and ultimately treat, mixed pathology AD.


Subject(s)
Alzheimer Disease , Caenorhabditis elegans Proteins , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/toxicity , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/metabolism , DNA-Binding Proteins/metabolism , Humans , Poly(A)-Binding Proteins , tau Proteins/metabolism
9.
Geroscience ; 44(2): 747-761, 2022 04.
Article in English | MEDLINE | ID: mdl-35122183

ABSTRACT

Neurodegenerative diseases with tau pathology, or tauopathies, include Alzheimer's disease and related dementia disorders. Previous work has shown that loss of the poly(A) RNA-binding protein gene sut-2/MSUT2 strongly suppressed tauopathy in Caenorhabditis elegans, human cell culture, and mouse models of tauopathy. However, the mechanism of suppression is still unclear. Recent work has shown that MSUT2 protein interacts with the THO complex and ALYREF, which are components of the mRNA nuclear export complex. Additionally, previous work showed ALYREF homolog Ref1 modulates TDP-43 and G4C2 toxicity in Drosophila melanogaster models. We used transgenic C. elegans models of tau or TDP-43 toxicity to investigate the effects of loss of ALYREF function on tau and TDP-43 toxicity. In C. elegans, three genes are homologous to human ALYREF: aly-1, aly-2, and aly-3. We found that loss of C. elegans aly gene function, especially loss of both aly-2 and aly-3, suppressed tau-induced toxic phenotypes. Loss of aly-2 and aly-3 was also able to suppress TDP-43-induced locomotor behavior deficits. However, loss of aly-2 and aly-3 had divergent effects on mRNA and protein levels as total tau protein levels were reduced while mRNA levels were increased, but no significant effects were seen on total TDP-43 protein or mRNA levels. Our results suggest that although aly genes modulate both tau and TDP-43-induced toxicity phenotypes, the molecular mechanisms of suppression are different and separated from impacts on mRNA and protein levels. Altogether, this study highlights the importance of elucidating RNA-related mechanisms in both tau and TDP-43-induced toxicity.


Subject(s)
Caenorhabditis elegans Proteins , Tauopathies , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Mice , Poly(A)-Binding Proteins/metabolism , RNA/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Tauopathies/genetics , Tauopathies/metabolism , Tauopathies/pathology , tau Proteins/genetics , tau Proteins/metabolism
10.
Acta Neuropathol Commun ; 9(1): 117, 2021 06 29.
Article in English | MEDLINE | ID: mdl-34187600

ABSTRACT

Several conserved nuclear RNA binding proteins (sut-1, sut-2, and parn-2) control tau aggregation and toxicity in C. elegans, mice, and human cells. MSUT2 protein normally resides in nuclear speckles, membraneless organelles composed of phase-separated RNAs and RNA-binding proteins that mediate critical steps in mRNA processing including mRNA splicing. We used human pathological tissue and transgenic mice to identify Alzheimer's disease-specific cellular changes related to nuclear speckles. We observed that nuclear speckle constituent scaffold protein SRRM2 is mislocalized and accumulates in cytoplasmic lesions in AD brain tissue. Furthermore, progression of tauopathy in transgenic mice is accompanied by increasing mislocalization of SRRM2 from the neuronal nucleus to the soma. In AD brain tissue, SRRM2 mislocalization associates with increased severity of pathological tau deposition. These findings suggest potential mechanisms by which pathological tau impacts nuclear speckle function in diverse organisms ranging from C. elegans to mice to humans. Future translational studies aimed at restoring nuclear speckle homeostasis may provide novel candidate therapeutic targets for pharmacological intervention.


Subject(s)
Alzheimer Disease/pathology , Neurons/pathology , Nuclear Speckles/pathology , RNA-Binding Proteins/metabolism , tau Proteins/metabolism , Aged , Aged, 80 and over , Alzheimer Disease/metabolism , Animals , Brain/metabolism , Brain/pathology , Cytoplasm/metabolism , Cytoplasm/pathology , Female , Humans , Male , Mice , Mice, Transgenic , Middle Aged , Neurons/metabolism , Nuclear Speckles/metabolism
11.
Geroscience ; 43(4): 1605-1614, 2021 08.
Article in English | MEDLINE | ID: mdl-34032984

ABSTRACT

Insoluble inclusions of phosphorylated TDP-43 occur in disease-affected neurons of most patients with amyotrophic lateral sclerosis (ALS) and about half of patients with frontotemporal lobar degeneration (FTLD-TDP). Phosphorylated TDP-43 potentiates a number of neurotoxic effects including reduced liquid-liquid phase separation dynamicity, changes in splicing, cytoplasmic mislocalization, and aggregation. Accumulating evidence suggests a balance of kinase and phosphatase activities control TDP-43 phosphorylation. Dysregulation of these processes may lead to an increase in phosphorylated TDP-43, ultimately contributing to neurotoxicity and neurodegeneration in disease. Here we summarize the evolving understanding of major regulators of TDP-43 phosphorylation as well as downstream consequences of their activities. Interventions restoring kinase and phosphatase balance may be a generalizable therapeutic strategy for all TDP-43 proteinopathies including ALS and FTLD-TDP.


Subject(s)
Amyotrophic Lateral Sclerosis , Frontotemporal Lobar Degeneration , Aging , DNA-Binding Proteins/metabolism , Humans , Phosphorylation
12.
G3 (Bethesda) ; 11(8)2021 08 07.
Article in English | MEDLINE | ID: mdl-33963840

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a debilitating, fatal neurodegenerative disease that causes rapid muscle wasting. It shares a spectrum of symptoms and pathology with frontotemporal lobar degeneration (FTLD). These diseases are caused by aberrant activity of a set of proteins including TDP-43 and UBIQUILIN-2 (UBQLN2). UBQLN2 encodes a ubiquitin-like adaptor protein involved in the ubiquitin-proteasome protein degradation pathway. Mutations in the PXX domain of UBQLN2 cause familial ALS. UBQLN2 aggregates in skein-like inclusions with other ALS and FTLD associated proteins including TDP-43 and ubiquitin. To facilitate further investigation of UBQLN2-mediated mechanisms of neurodegeneration, we made Caenorhabditis elegans transgenic lines pan-neuronally expressing human UBQLN2 cDNAs carrying either the wild-type UBQLN2 sequence or UBQLN2 with ALS causing mutations. Transgenic animals exhibit motor dysfunction accompanied by neurodegeneration of GABAergic motor neurons. At low levels of UBQLN2 expression, wild-type UBQLN2 causes significant motor impairment and neurodegeneration that is exacerbated by ALS associated mutations in UBQLN2. At higher levels of UBQLN2 expression, both wild-type and ALS mutated versions of UBQLN2 cause severe impairment. Molecular genetic investigation revealed that UBQLN2 dependent locomotor defects do not require the involvement of the endogenous homolog of TDP-43 in C. elegans (tdp-1). However, co-expression of wild-type human TDP-43 exacerbates UBQLN2 deficits. This model of UBQLN2-mediated neurodegeneration may be useful for further mechanistic investigation into the molecular cascades driving neurodegeneration in ALS and ALS-FTLD.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Autophagy-Related Proteins/genetics , Caenorhabditis elegans , DNA-Binding Proteins/genetics , Neurodegenerative Diseases , Amyotrophic Lateral Sclerosis/genetics , Animals , Animals, Genetically Modified , Caenorhabditis elegans/metabolism , Frontotemporal Lobar Degeneration , Humans , Neurodegenerative Diseases/genetics
13.
PLoS One ; 16(2): e0245962, 2021.
Article in English | MEDLINE | ID: mdl-33524017

ABSTRACT

Effective SARS-CoV-2 antiviral drugs are desperately needed. The SARS-CoV-2 main protease (Mpro) appears as an attractive target for drug development. We show that the existing pharmacopeia contains many drugs with potential for therapeutic repurposing as selective and potent inhibitors of SARS-CoV-2 Mpro. We screened a collection of ~6,070 drugs with a previous history of use in humans for compounds that inhibit the activity of Mpro in vitro and found ~50 compounds with activity against Mpro. Subsequent dose validation studies demonstrated 8 dose responsive hits with an IC50 ≤ 50 µM. Hits from our screen are enriched with hepatitis C NS3/4A protease targeting drugs including boceprevir, ciluprevir. narlaprevir, and telaprevir. This work suggests previous large-scale commercial drug development initiatives targeting hepatitis C NS3/4A viral protease should be revisited because some previous lead compounds may be more potent against SARS-CoV-2 Mpro than boceprevir and suitable for rapid repurposing.


Subject(s)
Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Drug Evaluation, Preclinical , Drug Repositioning , Hepacivirus/drug effects , Hepatitis C/drug therapy , Protease Inhibitors/pharmacology , SARS-CoV-2/drug effects , Biological Assay , Fluorescence , High-Throughput Screening Assays , Humans , Reproducibility of Results
14.
SLAS Discov ; 26(3): 400-409, 2021 03.
Article in English | MEDLINE | ID: mdl-32981422

ABSTRACT

Tauopathies are neurological disorders characterized by intracellular tau deposits forming neurofibrillary tangles, neuropil threads, or other disease-specific aggregates composed of the protein tau. Tauopathy disorders include frontotemporal lobar degeneration, corticobasal degeneration, Pick's disease, and the largest cause of dementia, Alzheimer's disease. The lack of disease-modifying therapeutic strategies to address tauopathies remains a critical unmet need in dementia care. Thus, novel broad-spectrum tau-targeted therapeutics could have a profound impact in multiple tauopathy disorders, including Alzheimer's disease. Here we have designed a drug discovery paradigm to identify inhibitors of the pathological tau-enabling protein, MSUT2. We previously showed that activity of the RNA-binding protein MSUT2 drives tauopathy, including tau-mediated neurodegeneration and cognitive dysfunction, in mouse models. Thus, we hypothesized that MSUT2 inhibitors could be therapeutic for tauopathy disorders. Our pipeline for MSUT2 inhibitory compound identification included a primary AlphaScreen, followed by dose-response validation, a secondary fluorescence polarization orthogonal assay, a tertiary specificity screen, and a preliminary toxicity screen. Our work here serves as a proof-of-principle methodology for finding specific inhibitors of the poly(A) RNA-binding protein MSUT2 interaction. Here we identify 4,4'-diisothiocyanostilbene-2,2'-sulfonic acid (DIDS) as a potential tool compound for future work probing the mechanism of MSUT2-induced tau pathology.


Subject(s)
4,4'-Diisothiocyanostilbene-2,2'-Disulfonic Acid/pharmacology , Carrier Proteins/genetics , High-Throughput Screening Assays , Neuroprotective Agents/pharmacology , Nootropic Agents/pharmacology , 4,4'-Diisothiocyanostilbene-2,2'-Disulfonic Acid/chemistry , Alzheimer Disease/drug therapy , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Brain/metabolism , Carrier Proteins/antagonists & inhibitors , Carrier Proteins/metabolism , Cloning, Molecular , Drug Discovery/methods , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Gene Expression Regulation , Genetic Vectors/chemistry , Genetic Vectors/metabolism , HEK293 Cells , Humans , Neuroprotective Agents/chemistry , Nootropic Agents/chemistry , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Signal Transduction , Tauopathies/drug therapy , Tauopathies/genetics , Tauopathies/metabolism , Tauopathies/pathology , tau Proteins/genetics , tau Proteins/metabolism
15.
Eur J Med Chem ; 210: 112968, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33139113

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with no known cure. Aggregates of the nuclear protein TDP-43 have been recognized as a hallmark of proteinopathy in both familial and sporadic cases of ALS. Post-translational modifications of this protein, include hyperphosphorylation, cause disruption of TDP-43 homeostasis and as a consequence, promotion of its neurotoxicity. Among the kinases involved in these changes, cell division cycle kinase 7 (CDC7) plays an important role by directly phosphorylating TDP-43. In the present manuscript the discovery, synthesis, and optimization of a new family of selective and ATP-competitive CDC7 inhibitors based on 6-mercaptopurine scaffold are described. Moreover, we demonstrate the ability of these inhibitors to reduce TDP-43 phosphorylation in both cell cultures and transgenic animal models such as C. elegans and Prp-hTDP43 (A315T) mice. Altogether, the compounds described here may be useful as versatile tools to explore the role of CDC7 in TDP-43 phosphorylation and also as new drug candidates for the future development of ALS therapies.


Subject(s)
Amyotrophic Lateral Sclerosis/drug therapy , Cell Cycle Proteins/antagonists & inhibitors , DNA-Binding Proteins/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Amyotrophic Lateral Sclerosis/metabolism , Animals , Behavior, Animal/drug effects , Cell Cycle Proteins/metabolism , DNA-Binding Proteins/metabolism , Dose-Response Relationship, Drug , Humans , Mice , Mice, Transgenic , Molecular Docking Simulation , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Protein Serine-Threonine Kinases/metabolism , Recombinant Proteins/metabolism , Structure-Activity Relationship , Tumor Cells, Cultured
16.
Neurobiol Dis ; 147: 105148, 2021 01.
Article in English | MEDLINE | ID: mdl-33184027

ABSTRACT

Aging drives pathological accumulation of proteins such as tau, causing neurodegenerative dementia disorders like Alzheimer's disease. Previously we showed loss of function mutations in the gene encoding the poly(A) RNA binding protein SUT-2/MSUT2 suppress tau-mediated neurotoxicity in C. elegans neurons, cultured human cells, and mouse brain, while loss of PABPN1 had the opposite effect (Wheeler et al., 2019). Here we found that blocking poly(A) tail extension with cordycepin exacerbates tauopathy in cultured human cells, which is rescued by MSUT2 knockdown. To further investigate the molecular mechanisms of poly(A) RNA-mediated tauopathy suppression, we examined whether genes encoding poly(A) nucleases also modulated tauopathy in a C. elegans tauopathy model. We found that loss of function mutations in C. elegans ccr-4 and panl-2 genes enhanced tauopathy phenotypes in tau transgenic C. elegans while loss of parn-2 partially suppressed tauopathy. In addition, loss of parn-1 blocked tauopathy suppression by loss of parn-2. Epistasis analysis showed that sut-2 loss of function suppressed the tauopathy enhancement caused by loss of ccr-4 and SUT-2 overexpression exacerbated tauopathy even in the presence of parn-2 loss of function in tau transgenic C. elegans. Thus sut-2 modulation of tauopathy is epistatic to ccr-4 and parn-2. We found that human deadenylases do not colocalize with human MSUT2 in nuclear speckles; however, expression levels of TOE1, the homolog of parn-2, correlated with that of MSUT2 in post-mortem Alzheimer's disease patient brains. Alzheimer's disease patients with low TOE1 levels exhibited significantly increased pathological tau deposition and loss of NeuN staining. Taken together, this work suggests suppressing tauopathy cannot be accomplished by simply extending poly(A) tails, but rather a more complex relationship exists between tau, sut-2/MSUT2 function, and control of poly(A) RNA metabolism, and that parn-2/TOE1 may be altered in tauopathy in a similar way.


Subject(s)
Alzheimer Disease/pathology , Caenorhabditis elegans Proteins/metabolism , Exoribonucleases/metabolism , Nuclear Proteins/metabolism , Poly(A)-Binding Proteins/metabolism , Tauopathies/pathology , Alzheimer Disease/metabolism , Animals , Animals, Genetically Modified , Brain/metabolism , Brain/pathology , Caenorhabditis elegans , Humans , Phenotype , Tauopathies/metabolism
17.
Acta Neuropathol Commun ; 8(1): 200, 2020 11 23.
Article in English | MEDLINE | ID: mdl-33228809

ABSTRACT

The kinase TTBK1 is predominantly expressed in the central nervous system and has been implicated in neurodegenerative diseases including Alzheimer's disease, frontotemporal lobar degeneration, and amyotrophic lateral sclerosis through its ability to phosphorylate the proteins tau and TDP-43. Mutations in the closely related gene TTBK2 cause spinocerebellar ataxia, type 11. However, it remains unknown whether altered TTBK1 activity alone can drive neurodegeneration. In order to characterize the consequences of neuronal TTBK1 upregulation in adult brains, we have generated a transgenic mouse model with inducible pan-neuronal expression of human TTBK1. We find that these inducible TTBK1 transgenic mice (iTTBK1 Tg) exhibit motor and cognitive phenotypes, including decreased grip strength, hyperactivity, limb-clasping, and spatial memory impairment. These behavioral phenotypes occur in conjunction with progressive weight loss, neuroinflammation, and severe cerebellar degeneration with Purkinje neuron loss. Phenotype onset begins weeks after TTBK1 induction, culminating in average mortality around 7 weeks post induction. The iTTBK1 Tg animals lack any obvious accumulation of pathological tau or TDP-43, indicating that TTBK1 expression drives neurodegeneration in the absence of detectable pathological protein deposition. In exploring TTBK1 functions, we identified the autophagy related protein GABARAP to be a novel interacting partner of TTBK1 and show that GABARAP protein levels increase in the brain following induction of TTBK1. These iTTBK1 Tg mice exhibit phenotypes reminiscent of spinocerebellar ataxia, and represent a new model of cerebellar neurodegeneration.


Subject(s)
Apoptosis Regulatory Proteins/metabolism , Cerebellum/metabolism , Microtubule-Associated Proteins/metabolism , Neurons/metabolism , Protein Serine-Threonine Kinases/genetics , Spinocerebellar Degenerations/genetics , Animals , Cerebellum/pathology , DNA-Binding Proteins/metabolism , Gene Knock-In Techniques , Hand Strength/physiology , Humans , Inflammation/genetics , Mice , Mice, Transgenic , Motor Activity/physiology , Purkinje Cells/pathology , Spatial Memory/physiology , Spinocerebellar Degenerations/physiopathology , Weight Loss/genetics , tau Proteins/metabolism
18.
ACS Chem Neurosci ; 11(15): 2277-2285, 2020 08 05.
Article in English | MEDLINE | ID: mdl-32589834

ABSTRACT

Neurofibrillary tangles composed of aberrantly aggregating tau protein are a hallmark of Alzheimer's disease and related dementia disorders. Recent work has shown that mammalian suppressor of tauopathy 2 (MSUT2), also named ZC3H14 (Zinc Finger CCCH-Type Containing 14), controls accumulation of pathological tau in cultured human cells and mice. Knocking out MSUT2 protects neurons from neurodegenerative tauopathy and preserves learning and memory. MSUT2 protein functions to bind polyadenosine [poly(A)] tails of mRNA through its C-terminal CCCH type zinc finger domains, and loss of CCCH domain function suppresses tauopathy in Caenorhabditis elegans and mice. Thus, we hypothesized that inhibiting the poly(A):MSUT2 RNA-protein interaction would ameliorate pathological tau accumulation. Here we present a high-throughput screening method for the identification of small molecules inhibiting the poly(A):MSUT2 RNA-protein interaction. We employed a fluorescent polarization assay for initial small molecule discovery with the intention to repurpose hits identified from the NIH Clinical Collection (NIHCC). Our drug repurposing development workflow included validation of hits by dose-response analysis, specificity testing, orthogonal assays of activity, and cytotoxicity. Validated compounds passing through this screening funnel will be evaluated for translational effectiveness in future studies. This preclinical drug development pipeline identified diverse FDA approved drugs duloxetine, saquinavir, and clofazimine as potential repurposing candidates for reducing pathological tau accumulation.


Subject(s)
Alzheimer Disease , Tauopathies , Animals , Mice , Poly A , RNA , Tauopathies/drug therapy , tau Proteins
19.
Hum Mol Genet ; 29(3): 495-505, 2020 02 01.
Article in English | MEDLINE | ID: mdl-31943011

ABSTRACT

Aggregates of Aß peptide and the microtubule-associated protein tau are key molecular hallmarks of Alzheimer's disease (AD). However, the interaction between these two pathologies and the mechanisms underlying disease progression have remained unclear. Numerous failed clinical trials suggest the necessity for greater mechanistic understanding in order to refine strategies for therapeutic discovery and development. To this end, we have generated a transgenic Caenorhabditis elegans model expressing both human Aß1-42 peptide and human tau protein pan-neuronally. We observed exacerbated behavioral dysfunction and age-dependent neurodegenerative changes in the Aß;tau transgenic animals. Further, these changes occurred in the Aß;tau transgenic animals at greater levels than worms harboring either the Aß1-42 or tau transgene alone and interestingly without changes to the levels of tau expression, phosphorylation or aggregation. Functional changes were partially rescued with the introduction of a genetic suppressor of tau pathology. Taken together, the data herein support a synergistic role for both Aß and tau in driving neuronal dysfunction seen in AD. Additionally, we believe that the utilization of the genetically tractable C. elegans model will provide a key resource for dissecting mechanisms driving AD molecular pathology.


Subject(s)
Amyloid beta-Peptides/adverse effects , Disease Models, Animal , Neurodegenerative Diseases/pathology , Neurons/pathology , tau Proteins/metabolism , Animals , Animals, Genetically Modified , Caenorhabditis elegans , Humans , Neurodegenerative Diseases/etiology , Neurodegenerative Diseases/metabolism , Neurons/metabolism , Phosphorylation , tau Proteins/genetics
20.
PLoS Genet ; 15(12): e1008526, 2019 12.
Article in English | MEDLINE | ID: mdl-31834878

ABSTRACT

Pathological phosphorylated TDP-43 protein (pTDP) deposition drives neurodegeneration in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD-TDP). However, the cellular and genetic mechanisms at work in pathological TDP-43 toxicity are not fully elucidated. To identify genetic modifiers of TDP-43 neurotoxicity, we utilized a Caenorhabditis elegans model of TDP-43 proteinopathy expressing human mutant TDP-43 pan-neuronally (TDP-43 tg). In TDP-43 tg C. elegans, we conducted a genome-wide RNAi screen covering 16,767 C. elegans genes for loss of function genetic suppressors of TDP-43-driven motor dysfunction. We identified 46 candidate genes that when knocked down partially ameliorate TDP-43 related phenotypes; 24 of these candidate genes have conserved homologs in the human genome. To rigorously validate the RNAi findings, we crossed the TDP-43 transgene into the background of homozygous strong genetic loss of function mutations. We have confirmed 9 of the 24 candidate genes significantly modulate TDP-43 transgenic phenotypes. Among the validated genes we focused on, one of the most consistent genetic modifier genes protecting against pTDP accumulation and motor deficits was the heparan sulfate-modifying enzyme hse-5, the C. elegans homolog of glucuronic acid epimerase (GLCE). We found that knockdown of human GLCE in cultured human cells protects against oxidative stress induced pTDP accumulation. Furthermore, expression of glucuronic acid epimerase is significantly decreased in the brains of FTLD-TDP cases relative to normal controls, demonstrating the potential disease relevance of the candidate genes identified. Taken together these findings nominate glucuronic acid epimerase as a novel candidate therapeutic target for TDP-43 proteinopathies including ALS and FTLD-TDP.


Subject(s)
Caenorhabditis elegans Proteins/genetics , Carbohydrate Epimerases/genetics , DNA-Binding Proteins/genetics , TDP-43 Proteinopathies/genetics , Animals , Animals, Genetically Modified , Autopsy , Brain/metabolism , Caenorhabditis elegans , Caenorhabditis elegans Proteins/metabolism , Carbohydrate Epimerases/metabolism , Cell Line , DNA-Binding Proteins/metabolism , Disease Models, Animal , Down-Regulation , Gene Knockdown Techniques , HEK293 Cells , Humans , RNA Interference , Reverse Genetics , TDP-43 Proteinopathies/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...